Abstract

Simulation degradation studies for industrial chemicals, biocidal products and plant protection products are required in the EU to estimate half-lives in soil, water and sediment for the comparison to persistence criteria for hazard (P/vP) assessment, and for use in exposure assessments. There is a discrepancy between European regulatory approaches regarding the temperature at which degradation half-lives should be (1) measured in simulation degradation testing of environmental compartments, and (2) compared to the P/vP criteria. In this paper, an opinion is provided on the options for the experimental temperature and extrapolation to other conditions. A review of the historical development of persistence criteria did not give conclusive evidence of the temperature at which the half-lives that underpin the P-criteria were measured, but room temperature is likely. Half-lives measured at 20 °C are in line with the intentions of some international agreements, but in the EU there is a continued political debate regarding the relevant temperature for comparison with persistence criteria. Measuring degradation at 20 °C has the advantage that metabolites/transformation products can be identified with greater accuracy, and that kinetic fits to determine half-lives for parent compounds and metabolites carry less uncertainty. Extrapolation of half-lives to lower temperatures is possible for assessing environmental exposure, but the uncertainty of the persistence classification is smaller when measured half-lives are used for direct comparison with P/vP criteria, without extrapolation. Model simulations demonstrate the pattern of concentrations that can be expected for realistic worst case climate scenarios in the EU based on the half-life of 120 days in soil at 20 °C and of 40 days in water at 20 °C, and their temporal and spatial variability.

Highlights

  • Classification of a chemical as being persistent (P), bioaccumulative (B) and toxic (T) or very persistent and very bioaccumulative is an integral part of the chemical legislation in the European Union (EU)

  • PBT/ vPvB substances can give rise to specific concerns due to their potential to accumulate in parts of the environment, which is in practice difficult to reverse and the effects of such accumulation are unpredictable in the long-term [15]

  • There is a discrepancy between the various European regulatory approaches regarding the temperature at which degradation half-lives should be [1] tested in simulating degradation testing of environmental compartments, and [2] compared to the P/very persistent (vP) criteria of Table 1

Read more

Summary

Introduction

Classification of a chemical as being persistent (P), bioaccumulative (B) and toxic (T) or very persistent (vP) and very bioaccumulative (vB) is an integral part of the chemical legislation in the European Union (EU). Matthies and Beulke Environ Sci Eur (2017) 29:15 laid down the evidence needed to identify POP, PBT and vPvB properties for PPPs. For persistence classification in the EU, degradation halflife criteria have been defined for fresh, estuarine and marine waters and sediments and for soil (Table 1). For persistence classification in the EU, degradation halflife criteria have been defined for fresh, estuarine and marine waters and sediments and for soil (Table 1) It is not clear what the relevant conditions are for the half-lives to be compared with persistence criteria. There is a discrepancy between the various European regulatory approaches regarding the temperature at which degradation half-lives should be [1] tested in simulating degradation testing of environmental compartments, and [2] compared to the P/vP criteria of Table 1

Objectives
Findings
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.