Abstract
In this work, engine-out particulate matter (PM) mass emissions from an off-highway diesel engine measured using a low-cost photometer, scanning mobility particle sizer (SMPS), elemental versus organic carbon (EC/OC) analysis, and a photo-acoustic analyzer are compared. Tested engine operating modes spanned the range of those known to result in high semivolatile particle concentration and those that emit primarily solid particles. Photometer measurements were taken following a primary dilution stage and a sample conditioner to control relative humidity prior to the instrument. Results of the study show that the photometer could qualitatively track total particle mass trends over the tested engine conditions though it was not accurate in measuring total carbon (TC) mass concentration. Further, the required photometric calibration factor (PCF) required to accurately measure total PM mass changes with the OC fraction of the particles. Variables that influence PCF include particle effective density, which changes both as a function of particle diameter and OC fraction. Differences in refractive index between semivolatile and solid particles are also significant and contribute to high error associated with measurement of total PM using the photometer. This work illustrates that it may be too difficult to accurately measure total engine PM mass with a photometer without knowing additional information about the sampled particles. However, removing semivolatile organic materials prior to the instrument may allow the accurate estimation of EC mass concentration alone.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.