Abstract
To improve the detection and characterization of cracks around fastener holes in multilayer structures without removing the fastener, model-based approaches are proposed to support the design of advanced eddy current (EC) NDE systems. This work demonstrates the validation and application of models to simulate EC inspection as part of the design process. The volume integral method (VIM) and finite element method (FEM) are both used to simulate eddy current inspection of fastener sites for fatigue cracks. Convergence studies, validation with existing models, experimental validation studies and validation through inverse method demonstrations are presented, providing a continuum of methods to ensure the quality of measurement models. Consideration concerning convergence and validation is also given with features sensitive to the sample geometry and flaw characteristics. A novel calibration technique is also presented to practically evaluate the transformation between model-based impedance calculations and experimental voltage data. A series of studies are presented concerning the detection of cracks around fastener holes demonstrating the quality of the simulated data to represent experimental measurements.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.