Abstract
Dynamic programming techniques are useful in smoothing and differentiating noisy data signals according to an optimization criterion and the results are generally quite robust to noise spectra different from that assumed in the construction of the filter. If the noise properties are sufficiently different, however, the generalized cross-validation function used in the optimization can exhibit either multiple minima or no minima other than that corresponding to an insignificant amount of smoothing; in these cases, the smoothing parameter desired by the user typically does not lie at the global minimum of the generalized cross-validation function, but at some other point on the curve which can be identified heuristically. I present two cases to demonstrate this phenomenon and describe what measures one can take to ensure that the desired smoothing parameter is obtained.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.