Abstract

The purpose of this study was to assess the benefits of a 3 T scanner and an eight-channel phased-array head coil for acquiring three-dimensional PRESS (Point REsolved Spectral Selection) proton (H-1) magnetic resonance spectroscopic imaging (MRSI) data from the brains of volunteers and patients with brain tumors relative to previous studies that used a 1.5 T scanner and a quadrature head coil. Issues that were of concern included differences in chemical shift artifacts, line broadening due to increased susceptibility at higher field strengths, changes in relaxation times and the increased complexity of the postprocessing software due to the need for combining signals from the multichannel data. Simulated and phantom spectra showed that very selective suppression pulses with a thickness of 40 mm and an overpress factor of at least 1.2 are needed to reduce chemical shift artifact and lipid contamination at higher field strengths. Spectral data from a phantom and those from six volunteers demonstrated that the signal-to-noise ratio (SNR) in the eight-channel coil was more than 50% higher than that in the quadrature head coil. For healthy volunteers and eight patients with brain tumors, the SNR at 3 T with the eight-channel coil was on average 1.5 times higher relative to the eight-channel coil at 1.5 T in voxels from normal-appearing brains. In combination with the effect of a higher field strength, the use of the eight-channel coil was able to provide an increase in the SNR of more than 2.33 times the corresponding acquisition at 1.5 T with a quadrature head coil. This is expected to be critical for clinical applications of MRSI in patients with brain tumors because it can be used to either decrease acquisition time or improve spatial resolution.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call