Abstract

BackgroundDoxycycline has been considered the first drug of choice for treating Wolbachia, a member of the Rickettsiaceae, which has a symbiotic relationship with filarial worms, including heartworms. Wolbachia, is susceptible to tetracyclines, which have been used as adjunctive treatments for heartworm disease. Treatment with doxycycline reduces Wolbachia numbers in all stages of heartworms and improves outcomes and decreased microfilaremia in dogs treated for heartworm disease. The American Heartworm Society recommends treatment with doxycycline in dogs diagnosed with heartworm disease at a dose of 10 mg/kg twice daily for 28 days. If doxycycline is not available, minocycline can be considered as a substitute. However, minocycline has not undergone an evaluation in dogs with heartworm disease, nor has an effective dose been established. Minocycline is an attractive option because of the higher cost of doxycycline and new pharmacokinetic information for dogs that provides guidance for appropriate dosage regimens to achieve pharmacokinetic-pharmacodynamic (PK-PD) targets.ResultsPublished reports from the Anti-Wolbachia Consortium (A-WOL) indicate superior in vitro activity of minocycline over doxycycline. Studies performed in mouse models to measure anti-Wolbachia activity showed that minocycline was 1.7 times more effective than doxycycline, despite a 3-fold lower pharmacokinetic exposure. To achieve the same exposure as achieved in the mouse infection model, a pharmacokinetic-pharmacodynamic (PK-PD) analysis was conducted to determine optimal dosages for dogs. The analysis showed that an oral minocycline dose of 3.75 to 5 mg/kg administered twice daily would attain similar targets as observed in mice and predicted for human infections.ConclusionsThere are potentially several advantages for use of minocycline in animals. It is well absorbed from oral administration, it has less protein binding than doxycycline (65% vs 92%) allowing for better distribution into tissue, and it is approximately two times more lipophilic than doxycycline, which may result in better intracellular penetration. More work is needed to document efficacy of minocycline for treating canine heartworm disease.

Highlights

  • Doxycycline has been considered the first drug of choice for treating Wolbachia, a member of the Rickettsiaceae, which has a symbiotic relationship with filarial worms, including heartworms

  • This paper presents an analysis of existing data, review of the literature to support antiWolbachia activity of minocycline, a presentation of the pharmacokinetic data available to guide dosing in dogs, and a pharmacokinetic-pharmacodynamic (PK-PD) analysis and Monte Carlo simulations to predict potential activity and dosages for heartworm-infected animals

  • The analysis reported here to predict effective antiWolbachia minocycline and doxycycline dosages for Results Monte Carlo simulations were used to calculate the probability of target attainment (PTA) shown in Figs. 2 and 3 and Table 4

Read more

Summary

Introduction

Doxycycline has been considered the first drug of choice for treating Wolbachia, a member of the Rickettsiaceae, which has a symbiotic relationship with filarial worms, including heartworms. Tetracyclines are among the oldest antimicrobial agents used in veterinary medicine This group of antibiotics was discovered in 1944 (chlortetracycline) and later expanded to include the various semisynthetic products that include tetracycline, doxycycline (1967), and minocycline (1972). The tetracycline spectrum of activity is generally broad, with activity against both aerobic and anaerobic gram-positive and gram-negative bacteria, though resistance among these bacteria can be common. Their greatest value, lies in the activity against atypical bacteria and some protozoa. Doxycycline has been considered the first drug of choice for these infections

Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call