Abstract

In ferronickel smelting, the selective carbothermic reduction of calcined nickel laterite ores in large electric furnaces yields a crude ferronickel product. The optimal process for nickel laterite smelting requires a fine balance between the metallurgical requirements of the process (feed composition, nickel recovery, energy consumption, product quality) and the capabilities of the feeding, tapping and off-gas systems, and especially of the furnace crucible and electrical system. The scale-up of nickel laterite smelting operations over the last 50 years has seen a tenfold increase in furnace power input. Furnace operations within the industry are examined to identify common trends and some new metrics are proposed which incorporate the combination of electrode power densities and the impact of alloy nickel grade on gas generation rates, and hence local electrode gas fluxes, which may impact on future scale-up of ferronickel furnaces.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.