Abstract

As demand for wireless mobile connectivity continues to explode, cellular network infrastructure capacity requirements continue to grow. While 5G tries to address capacity requirements at the radio layer, the load on the cellular core network infrastructure (called Enhanced Packet Core (EPC)) stresses the network infrastructure. Our work examines the architecture, protocols of current cellular infrastructures and the workload on the EPC. We study the challenges in dimensioning capacity and review the design alternatives to support the significant scale up desired, even for the near future. We breakdown the workload on the network infrastructure into its components-signaling event transactions; database or lookup transactions and packet processing. We quantitatively show the control plane and data plane load on the various components of the EPC and estimate how future 5G cellular network workloads will scale. This analysis helps us to understand the scalability challenges for future 5G EPC network components. Other efforts to scale the 5G cellular network take a system view where the control plane is separated from the data path and is terminated on a centralized SDN controller. The SDN controller configures the data path on a widely distributed switching infrastructure. Our analysis of the workload informs us on the feasibility of various design alternatives and motivates our efforts to develop our clean-slate approach, called CleanG.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call