Abstract

In this paper, we consider nap-of-the-earth (NOE) rotorcraft flight as one of the applications in which obstacle avoidance plays a key role, and investigate the prospects of automating the guidance functions of NOE flight. Based on a proposed structure for the guidance functions, we identify obstacle detection and obstacle avoidance as the two critical components requiring substantial advancement before an automatic guidance system can be realized. We discuss the major sources of difficulties in developing these two components, including sensor requirements for which we provide a systematic analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.