Abstract

Trichloroethylene (TRI) is readily absorbed into the body through the lungs and gastrointestinal mucosa. Exposure to TRI can occur from contamination of air, water, and food; and this contamination may be sufficient to produce adverse effects in the exposed populations. Elimination of TRI involves two major processes: pulmonary excretion of unchanged TRI and relatively rapid hepatic biotransformation to urinary metabolites. The principal site of metabolism of TRI is the liver, but the lung and possibly other tissues also metabolize TRI, and dichlorovinyl-cysteine (DCVC) is formed in the kidney. Humans appear to metabolize TRI extensively. Both rats and mice also have a considerable capacity to metabolize TRI, and the maximal capacities of the rat versus the mouse appear to be more closely related to relative body surface areas than to body weights. Metabolism is almost linearly related to dose at lower doses, becoming dose dependent at higher doses, and is probably best described overall by Michaelis-Menten kinetics. Major end metabolites are trichloroethanol (TCE), trichloroethanol-glucuronide, and trichloroacetic acid (TCA). Metabolism also produces several possibly reactive intermediate metabolites, including chloral, TRI-epoxide, dichlorovinyl-cysteine (DCVC), dichloroacetyl chloride, dichloroacetic acid (DCA), and chloroform, which is further metabolized to phosgene that may covalently bind extensively to cellular lipids and proteins, and, to a much lesser degree, to DNA. The toxicities associated with TRI exposure are considered to reside in its reactive metabolites. The mutagenic and carcinogenic potential of TRI is also generally thought to be due to reactive intermediate biotransformation products rather than the parent molecule itself, although the biological mechanisms by which specific TRI metabolites exert their toxic activity observed in experimental animals and, in some cases, humans are not known. The binding intensity of TRI metabolites is greater in the liver than in the kidney. Comparative studies of biotransformation of TRI in rats and mice failed to detect any major species or strain differences in metabolism. Quantitative differences in metabolism across species probably result from differences in metabolic rate and enterohepatic recirculation of metabolites. Aging rats have less capacity for microsomal metabolism, as reflected by covalent binding of TRI, than either adult or young rats. This is likely to be the same in other species, including humans. The experimental evidence is consistent with the metabolic pathways for TRI being qualitatively similar in mice, rats, and humans. The formation of the major metabolites--TCE, TCE-glucuronide, and TCA--may be explained by the production of chloral as an intermediate after the initial oxidation of TRI to TRI-epoxide.(ABSTRACT TRUNCATED AT 400 WORDS)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.