Abstract

ABSTRACTTo better understand the crack closure and propagation, an analytical model is established. The residual stress effect on fatigue crack growth equations has been considered using the residual stress intensity factor (SIF) (Kres). The joint geometries, residual stress distributions (σres) and residual stress ratio (Rres) were considered also. Kres are calculated using the analytical weight function (WF) method and different residual stress distributions. It is to be emphasized that the current approach is little investigated. This is because the WF has already been developed to calculate SIF for an existing crack. The current approach calculates Kres for the crack that initiates and propagates until failure. Different stress distributions have been used, and Rres is defined. The validity of using the WF has been shown. SIF due to applied load (Kapp) and applied stress ratio (Rapp) have been considered. Fatigue crack growth rate was investigated in accordance with the current approach. The results have been verified and benchmarked.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.