Abstract

This paper presents a method to compensate the effects of the electron energy distribution function (EEDF) shape on plasma characteristics when using global models to describe Ar and N2 inductively coupled discharges. A non-Maxwellian global model is developed for the pressure range 1-1000 mTorr by using an user-friendly Boltzmann equation solver to calculate the EEDF. The calculated EEDFs are compared with the measurements performed with a single Langmuir probe in the same conditions. We also compare the calculated results by using the Boltzmann equation solver with the results by assuming a Maxwellian EEDF and point out the influence of both methods on the contribution of the multi-step process on ionization. Finally, to take into account the shape of the EEDF in global models, abacuses are presented as a function of the absorbed power density and the pressure for typical Ar and N2 planar ICP discharges.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.