Abstract
There exists a temporal and spatial coupling effect among the hydropower units in cascade hydropower stations which constitutes a complex planning problem. Researching the multi-objective optimization scheduling of cascade hydropower stations under various spatiotemporal inflow impacts is of significant importance. Previous studies have typically only focused on the economic dispatch issues of cascade hydropower stations, with little attention given to their coupling mechanism models and the uncertainty impacts of inflows. Firstly, this paper establishes a coupled optimization scheduling model for cascade hydropower stations and elaborates on the operational mechanism of cascade hydropower stations. Secondly, according to the needs of actual scenarios, two types of optimization objectives are set, considering both the supply adequacy and peak-shaving capacity as indicators, with the total residual load and the peak-valley difference of the residual load as comprehensive optimization objectives. Subsequently, considering the uncertainty impact of the inflow side, a stochastic optimization model for inflow is established based on a normal distribution probability. Finally, case study analyses demonstrate that the proposed model not only effectively achieves supply stability but also reduces the peak-valley difference in load, and can achieve optimized scheduling under the uncertain environment of inflow.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.