Abstract

This research paper aims to investigate the significance of considering the humidity factor during material selection in plastic product design. Humidity is a crucial environmental parameter that can profoundly influence the properties and performance of plastic materials. To ensure the long-term performance and dependability of plastic products, it is essential to comprehend and take into consideration the impacts of moisture on plastics. Humidity plays a fundamental role in the degradation and functional changes of plastic materials. Moisture absorption can lead to reduced mechanical strength and accelerated degradation processes. The selection of appropriate materials that can withstand humid conditions becomes paramount in product design. For this reason it is important to evaluate the moisture absorption properties of plastic materials. Different polymers exhibit varying degrees of moisture diffusion rates that directly affect their performance in humid environments. Evaluation of moisture measurement results allows designers to make informed decisions during material selection. For this reason, we designed an experiment to investigate which material retains less moisture. In our research, we determined 2 different experimental groups. The first of these groups (type A) was kept under normal conditions by adding glass fiber additive at different rates to the PA66 material, and each product with 3 different additives was tested for moisture for 10 days and the results were recorded. In the second experimental group, type B, the products produced with the same material and additives at the same rate were kept in water for 24 hours, then they were removed from the water and moisture tests were performed. It is aimed to make material selection by interpreting the test results and thus to facilitate the making of designs suitable for use.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.