Abstract

The choice of modelling strategy and analysis options has a significant influence on the results of the seismic assessment of existing buildings and therefore it is very important to have an idea of the dispersion in the results due to different hypotheses regarding the structural model. This paper concentrates on pushover analysis, considered as the reference method currently adopted by engineers for the seismic assessment of existing masonry buildings, and on the equivalent-frame macro-element approach, assumed to be a satisfactory compromise between computational effort and accuracy in the results. A logic tree approach is used to treat the different considered options, including the definition of the geometry of the equivalent frame, the distribution of loads among the masonry piers and on the horizontal diaphragms, the degree of coupling between orthogonal walls, the definition of the cracked stiffness of structural elements and the modelling of masonry spandrels. By assigning a value of probability to each end branch of the tree, the distribution of the peak ground acceleration corresponding to the selected limit states can be obtained and, from this distribution, a quantitative estimate (in probabilistic terms) of the effect of modelling uncertainties on the seismic response of masonry structures is derived.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.