Abstract

Results and recommendations for evaluating the effects of fine-scale oceanographic scattering and three-dimensional (3-D) acoustic propagation variability on the Effects of Sound on the Marine Environment (ESME) acoustic exposure model are presented. Pertinent acoustic scattering theory is briefly reviewed and ocean sound-speed fluctuation models are discussed. Particular attention is given to the nonlinear and linear components of the ocean internal wave field as a source of sound-speed inhomogeneities. Sound scattering through the mainly isotropic linear internal wave field is presented and new results relating to acoustic scattering by the nonlinear internal wave field in both along and across internal wave wavefront orientations are examined. In many cases, there are noteworthy fine-scale induced intensity biases and fluctuations of order 5-20 dB

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.