Abstract
As federated learning continues to increase in scale, the impact caused by device and data heterogeneity is becoming more severe. FedProx, as a comparison algorithm, is widely used as a solution to deal with system heterogeneity and statistical heterogeneity in several scenarios. However, there is no work that comprehensively investigates the enhancements that FedProx can bring to current secure federation algorithms in terms of privacy protection. In this paper, we combine differential privacy and personalized differential privacy with FedProx, propose the DP-Prox and PDP-Prox algorithms under different privacy budget settings and simulate the algorithms on multiple datasets. The experiments show that the proposed algorithms not only significantly improve the convergence of the privacy algorithms under different heterogeneity conditions, but also achieve similar or even better accuracy than the baseline algorithm.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.