Abstract
To investigate the impact of diverse soil characteristics and surface irregularities on interfacial shear strength attributes, a large-scale straight shear apparatus and particle flow software were employed to conduct interfacial shear experiments with varying soil properties and surface irregularities. The results demonstrated that, under an identical R and normal stress conditions, the clay and silty clay shear stress–displacement curves exhibited strain softening, while the silt curve exhibited strain hardening. An increase in R can markedly enhance the peak shear strength at the interface, although a critical value exists beyond which this effect is no longer observed. The Rc is primarily contingent upon the soil properties. Numerical simulations demonstrate that the internal shear displacement and deformation resulting from the diverse soil properties are distinct. Clay particles are constituted of varying-sized particle aggregates that collectively resist shear. Silt particles resist shear through interfacial friction generated by shear. The practicality of Duncan and Clough’s constitutive model for interfacial shear with roughness influence is verified, and the constitutive model under strain hardening is modified.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.