Abstract

ABSTRACT The protection of migratory birds and their habitats is important to the ecological stability of the Qinghai-Tibet Plateau (QTP). Currently protected areas (PAs) were designed in accordance with species distribution patterns under current climatic conditions, thus ignoring climate change will lead to a decrease in the protection efficiency of PAs. In this study, using the flagship species Grus nigricollis, as an example, we used the maximum entropy (MaxEnt) model to simulate the distributions and conservation status of G. nigricollis and optimized the existing PA boundaries . The results showed that (1) suitable habitat- for G. nigricollis accounts for 12.48% of the QTP area, and the PAs established under current climatic conditions cover 17.84% of this suitable habitat area; (2) future climate changes will influence the distribution and quality of G. nigricollis habitats, and the average protection efficiency of the current PAs in four climatic scenarios will decrease from 17.84% to 15.31%; and (3) through optimization, the efficiency of existing PAs can be increased by 0.75 times and reach 28.37%, indicating PA planning must consider not only current climate conditions but also the effects of climate changes. Our results aim to address shortcomings in the conservation efficiency of PAs and provide an example for resolving mismatched PA boundaries and habitat changes for species.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call