Abstract

The interaction of coralyne, an analogue of natural protoberberine alkaloids, with 4-sulfonatocalixarenes (SCXn) was studied in aqueous solution at pH 2 to reveal the major factors determining the stability, stoichiometry, and fluorescent properties of the species formed. Addition of SCXn to coralyne solution brought about remarkable fluorescence intensity diminution and hypochromism in the 300-440 nm absorption domain. SCXn hosts were capable of binding as many coralyne molecules as the number of their hydroxybenzenesulfonate units. The SCXn-promoted interaction among coralyne molecules was evidenced by the appearance of a long-lived fluorescence component. In dilute alkaloid solution, 1:1 and 1:2 coralyne/4-sulfonatocalix[4]arene complexes were formed, but only 1:1 association occurred with 4-sulfonatocalix[8]arene. Time-resolved fluorescence measurements demonstrated that photoinduced electron transfer from a hydroxybenzenesulfonate moiety to the singlet-excited coralyne can compete efficiently with the other deactivation processes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.