Abstract
Multilingual code retrieval aims to find code snippets relevant to a user's query from a multilingual codebase, which plays a crucial role in software development and expands their application scenarios compared to classical monolingual code retrieval. Despite the performance improvements achieved by previous studies, two crucial problems are overlooked in the multilingual scenario. First, certain programming languages face data scarcity in specific domains, resulting in limited representation capabilities within those domains. Second, different programming languages can be used interchangeably within the same domain, making it challenging for multilingual models to accurately identify the intended programming language of a user's query. To address these issues, we propose the CommONalities and SpecIalties Driven Multilingual CodE Retrieval Framework (CONSIDER), which includes two modules. The first module enhances the representation of various programming languages by modeling pairwise and global commonalities among them. The second module introduces a novel contrastive learning negative sampling algorithm that leverages language confusion to automatically extract specific language features. Through our experiments, we confirm the significant benefits of our model in real-world multilingual code retrieval scenarios in various aspects. Furthermore, an evaluation demonstrates the effectiveness of our proposed CONSIDER framework in monolingual scenarios as well. Our source code is available at https://github.com/smsquirrel/consider.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the AAAI Conference on Artificial Intelligence
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.