Abstract

At military training sites, a variety of pollutants such as hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), may contaminate the area originating from used munitions. Studies investigating the mechanism of toxicity of RDX have shown that it affects the central nervous system causing seizures in humans and animals. Environmental pollutants such as RDX have the potential to affect many different species, therefore it is important to establish how phylogenetically distant species may respond to these types of emerging pollutants. In this paper, we have used a transcriptional network approach to compare and contrast the neurotoxic effects of RDX among five phylogenetically disparate species: rat (Sprague-Dawley), Northern bobwhite quail (Colinus virginianus), fathead minnow (Pimephales promelas), earthworm (Eisenia fetida), and coral (Acropora formosa). Pathway enrichment analysis indicated a conservation of RDX impacts on pathways related to neuronal function in rat, Northern bobwhite quail, fathead minnows and earthworm, but not in coral. As evolutionary distance increased common responses decreased with impacts on energy and metabolism dominating effects in coral. A neurotransmission related transcriptional network based on whole rat brain responses to RDX exposure was used to identify functionally related modules of genes, components of which were conserved across species depending upon evolutionary distance. Overall, the meta-analysis using genomic data of the effects of RDX on several species suggested a common and conserved mode of action of the chemical throughout phylogenetically remote organisms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.