Abstract

Serotonin transporter (SERT) is one of the key protein targets of cocaine. Despite intensive studies, it is not clear where cocaine binds to its targets and what residues are involved in cocaine binding. We have cloned the serotonin transporter from silkworm ( Bombyx mori, bmSERT). When expressed in cultured cells, bmSERT is over 20-fold less sensitive to cocaine than Drosophila melanogaster SERT (dmSERT). We performed species-scanning mutagenesis using bmSERT and dmSERT. There are two adjacent threonine residues in transmembrane domain 12 of bmSERT where the corresponding residues are two serines in dmSERT and in all known mammalian monoamine transporters. Replacing the serine residues with threonines in dmSERT reduces cocaine sensitivity; while switching the two threonine residues in bmSERT to serines increased cocaine sensitivity. Mutations at the corresponding residues in dopamine transporter also changed cocaine affinity. Our results suggest that the conserved serine residues in SERT contribute to high-affinity cocaine binding.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call