Abstract
MonA is a subunit of a guanine nucleotide exchange factor that is important for vacuole passing and autophagy processes in eukaryotes. In this study, we characterized the function of MonA, an orthologue of Saccharomyces cerevisiae Mon1, in the model fungus Aspergillus nidulans and a toxigenic fungus A. flavus. In A. nidulans, the absence of AnimonA led to decreased fungal growth, reduced asexual reproduction, and defective cleistothecia production. In addition, AnimonA deletion mutants exhibited decreased spore viability, had reduced trehalose contents in conidia, and were sensitive to thermal stress. In A. flavus, deletion of AflmonA caused decreased fungal growth and defective production of asexual spores and sclerotia structures. Moreover, the absence of monA affected vacuole morphology in both species. Taken together, these results indicate that MonA plays conserved roles in controlling fungal growth, development and vacuole morphology in A. nidulans and A. flavus.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.