Abstract

We derive conservation laws in Symmetric Teleparallel Equivalent of General Relativity (STEGR) with direct application of Noether’s theorem. This approach allows us to construct covariant conserved currents, corresponding superpotentials and invariant charges. A necessary component of our constructions is the concept of “turning off” gravity, introduced in the framework of STEGR to define the flat and torsionless connection. By calculating currents, one can obtain local characteristics of gravitational field like energy density. Surface integration of superpotentials gives charges which correspond to global quantities of the system like mass, momentum, etc. To test our results for the obtained currents and superpotentials, we calculate the energy density measured by freely falling observer in the simple solutions (Friedman universe, Schwartzchild black hole) and total mass of the Schwartzchild black hole. We find ambiguities in obtaining the connection, which explicitly affect the values of conserved quantities, and discuss possible solutions to this problem.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.