Abstract

Streptococcus mutans, a bacterium with high cariogenic potential, coordinates competence for natural transformation and bacteriocin production via the XIP and CSP pheromones. CSP is effective in inducing bacteriocin responses but not competence in chemically defined media (CDM). This is in contrast to XIP, which is a strong inducer of competence in CDM but can also stimulate bacteriocin genes as a late response. Interconnections between the pathways activated by the two pheromones have been characterized in certain detail in S. mutans UA159, but it is mostly unknown whether such findings are representative for the species. In this study, we used bioassays based on luciferase reporters for the bacteriocin gene cipB and the alternative sigma factor sigX to investigate various S. mutans isolates for production and response to CSP and XIP pheromones in CDM. Similar to S. mutans UA159, endogenous CSP was undetectable in the culture supernatants of all tested strains. During optimization of the bioassay using the cipB reporter, we discovered that the activity of exogenous CSP used as a standard was reduced over time during S. mutans growth. Using a FRET-CSP reporter peptide, we found that S. mutans UA159 was able to degrade CSP, and that such activity was not significantly different in isogenic mutants with deletion of the protease gene htrA or the competence genes sigX, oppD, and comR. CSP cleavage was also detected in all the wild type strains, indicating that this is a conserved feature in S. mutans. For the XIP pheromone, endogenous production was observed in the supernatants of all 34 tested strains at peak concentrations in culture supernatants that varied between 200 and 26000 nM. Transformation in the presence of exogenous XIP was detected in all but one of the isolates. The efficiency of transformation varied, however, among the different strains, and for those with the highest transformation rates, endogenous XIP peak concentrations in the supernatants were above 2000 nM XIP. We conclude that XIP production and inducing effect on transformation, as well as the ability to degrade CSP, are conserved functions among different S. mutans isolates. Understanding the functionality and conservation of pheromone systems in S. mutans may lead to novel strategies to prevent or treat unbalances in oral microbiomes that may favor diseases.

Highlights

  • Natural genetic transformation is widely distributed in bacteria

  • The potency of CSP in inducing the activity of the cipB promoter was increased by approximately 33-fold in chemically defined media (CDM) supplemented with bovine serum albumin (BSA) compared with CDM alone (Figure 2A)

  • The results showed that CSP concentrations up to 1000 nM failed to induce the PsigXluc reporter in CDM supplemented with BSA and glucose (Figure 2B)

Read more

Summary

Introduction

Natural genetic transformation is widely distributed in bacteria. In streptococci it occurs during a genetically programmed differentiated state called competence. During this state the bacteria become capable of taking up DNA from the environment and incorporate it into their genomes. SigX orchestrates a core response in streptococcal species characterized by the induction of 27 to 30 genes (Khan et al, 2016). The functions of the core genes are predominantly related to transformation, most of them coding for competence effector proteins for DNA binding, uptake and recombination (Li et al, 2001; Mashburn-Warren et al, 2010; Khan et al, 2016)

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call