Abstract

Gram-negative porcine pathogens from the Pasteurellaceae family possess a surface receptor complex capable of acquiring iron from porcine transferrin (pTf). This receptor consists of transferrin-binding protein A (TbpA), a transmembrane iron transporter, and TbpB, a surface-exposed lipoprotein. Questions remain as to how the receptor complex engages pTf in such a way that iron is positioned for release, and whether divergent strains present distinct recognition sites on Tf. In this study, the TbpB-pTf interface was mapped using a combination of mass shift analysis and molecular docking simulations, localizing binding uniquely to the pTf C lobe for multiple divergent strains of Actinobacillus plueropneumoniae and suis. The interface was further characterized and validated with site-directed mutagenesis. Although targeting a common lobe, variants differ in preference for the two sublobes comprising the iron coordination site. Sublobes C1 and C2 participate in high affinity binding, but sublobe C1 contributes in a minor fashion to the overall affinity. Further, the TbpB-pTf complex does not release iron independent of other mediators, based on competitive iron binding studies. Together, our findings support a model whereby TbpB efficiently captures and presents iron-loaded pTf to other elements of the uptake pathway, even under low iron conditions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.