Abstract

The catalytic activity of wild typeEscherichia coliCu,Zn superoxide dismutases and of two mutants in which two lysine residues conserved in most bacterial Cu,Zn superoxide dismutases have been replaced by serine was investigated by pulse radiolysis and Brownian dynamics simulations. Experimental and computational data show that neutralization of Lys60 strongly reduces the catalytic activity of the enzyme (∼50%), indicating that this residue has a primary role in the electrostatic attraction of the substrate towards the catalytic copper. Neutralization of Lys63 does not significantly influence the catalytic rate constant. The results suggest that prokaryotic Cu,Zn superoxide dismutases have evolved an electrostatic mechanism to facilitate the enzyme-substrate encounter that is functionally equivalent to that already found in the eukaryotic enzymes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call