Abstract

The cytoskeletal Filamenting temperature-sensitive Z (FtsZ) ring is critical for cell division in bacteria and chloroplast division in photosynthetic eukaryotes. While bacterial FtsZ rings are composed of a single FtsZ, except in the basal glaucophytes, chloroplast division involves two heteropolymer-forming FtsZ isoforms: FtsZ1 and FtsZ2 in the green lineage and FtsZA and FtsZB in red algae. FtsZ1 and FtsZB probably arose by duplication of the more ancestral FtsZ2 and FtsZA, respectively. We expressed fluorescent fusions of FtsZ from diverse photosynthetic organisms in a heterologous system to compare their intrinsic assembly and dynamic properties. FtsZ2 and FtsZA filaments were morphologically distinct from FtsZ1 and FtsZB filaments. When coexpressed, FtsZ pairs from plants and algae colocalized, consistent with heteropolymerization. Fluorescence recovery after photobleaching experiments demonstrated that subunit exchange was greater from FtsZ1 and FtsZB filaments than from FtsZ2 and FtsZA filaments and that FtsZ1 and FtsZB increased turnover of FtsZ2 and FtsZA, respectively, from heteropolymers. GTPase activity was essential only for turnover of FtsZ2 and FtsZA filaments. Cyanobacterial and glaucophyte FtsZ properties mostly resembled those of FtsZ2 and FtsZA, though the glaucophyte protein exhibited some hybrid features. Our results demonstrate that the more ancestral FtsZ2 and FtsZA have retained functional attributes of their common FtsZ ancestor, while eukaryotic-specific FtsZ1 and FtsZB acquired new but similar dynamic properties, possibly through convergent evolution. Our findings suggest that the evolution of a second FtsZ that could copolymerize with the more ancestral form to enhance FtsZ-ring dynamics may have been essential for plastid evolution in the green and red photosynthetic lineages.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call