Abstract

BackgroundThe zona limitans intrathalamica (ZLI) and the isthmus organizer (IsO) are two major secondary organizers of vertebrate brain development. These organizers are located at the interface of the expression domains of key patterning genes (Fezf-Irx and Otx-Gbx, respectively). To gain insights into the evolutionary origin of the ZLI, we studied Fezf in bilaterians.ResultsIn this paper, we identified a conserved sequence motif (Fezf box) in all bilaterians. We report the expression pattern of Fezf in amphioxus and Drosophila and compare it with those of Gbx, Otx and Irx. We found that the relative expression patterns of these genes in vertebrates are fully conserved in amphioxus and flies, indicating that the genetic subdivisions defining the location of both secondary organizers in early vertebrate brain development were probably present in the last common ancestor of extant bilaterians. However, in contrast to vertebrates, we found that Irx-defective flies do not show an affected Fezf expression pattern.ConclusionsThe absence of expression of the corresponding morphogens from cells at these conserved genetic boundaries in invertebrates suggests that the organizing properties might have evolved specifically in the vertebrate lineage by the recruitment of key morphogens to these conserved genetic locations.

Highlights

  • The zona limitans intrathalamica (ZLI) and the isthmus organizer (IsO) are two major secondary organizers of vertebrate brain development

  • The IsO is located in the midbrain-hindbrain boundary (MHB), at the abutting expression domains of Otx and Gbx, and the ZLI develops within the diencephalon, between the prethalamus and thalamus, at the boundary of Fezf and Irx gene expression domains (Figure 1A)

  • Bona fide IsO and ZLI organizers are present in all vertebrates, including basal living agnathans [4,5]; the absence of the key morphogens at analogous topological positions [6,7,8,9] suggests that comparable signaling centers are not present in invertebrates with a central nervous system (CNS), including amphioxus, a basal chordate considered to be the best living proxy to the vertebrate-invertebrate ancestor [5]

Read more

Summary

Results

We identified a conserved sequence motif (Fezf box) in all bilaterians. We report the expression pattern of Fezf in amphioxus and Drosophila and compare it with those of Gbx, Otx and Irx. We found that the relative expression patterns of these genes in vertebrates are fully conserved in amphioxus and flies, indicating that the genetic subdivisions defining the location of both secondary organizers in early vertebrate brain development were probably present in the last common ancestor of extant bilaterians. In contrast to vertebrates, we found that Irx-defective flies do not show an affected Fezf expression pattern

Conclusions
Background
Results and Discussion
Methods
49. Harland R
58. Holland LZ
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call