Abstract

The T overline{mathrm{T}} deformation of 2-dimensional QFTs is closely-related to Jackiw- Teitelboim gravity. It has been shown that, at the classical level, this perturbation induces an interaction between the stress-energy tensor and space-time and the equations of motion of the deformed theory map onto the original ones through a field-dependent coordinate transformation. At the quantum level, instead, the perturbation is induced by a modification of the original S-matrix by a specific CDD factor and, correspondingly, the quantised energy levels evolve according to a Burgers-type equation. In this paper, we point out that, in the framework of integrable field theories, there exist infinite families of perturbations characterised by a coupling between space-time and local conserved currents, labelled by the Lorentz spin. Similarly to the T overline{mathrm{T}} case, the deformed models emerge through a field-dependent coordinate transformation involving conserved currents with higher Lorentz spin. Furthermore, using a geometric construction, we present a general method to derive the integrable hierarchy of the corresponding deformed models. The resulting expressions of the conserved currents turn out to be essential for the identification of the scattering phase factors which generate the deformations of the S-matrix, at the quantum level. Finally, the effect of the perturbations on the finite-volume spectrum is investigated using a non-linear integral equation. Exact spectral flow equations are derived, and links with previous literature, in particular on the J overline{mathrm{T}} model, are discussed. While the classical setup is very general, the sine-Gordon model and its CFT limit are used as illustrative quantum examples. Most of the final equations and considerations are, however, of broader validity, or easily generalisable to more complicated systems.

Highlights

  • Where T μν(y) is the Hilbert stress-energy tensor associated to the undeformed theory, canonically defined as

  • From (3.89), we find that the momentum density is unaffected by the perturbation, since

  • This second part of the paper is devoted to the study of the quantum version of the perturbations of classical field theories described in the preceding sections

Read more

Summary

TT -deformed higher spin conserved currents

The aim of this section is to introduce an efficient method, based on the field-dependent coordinate transformation derived in [18], to reconstruct the local Integrals of Motion (IMs) associated to the TTdeformation of a generic integrable field theory.

A strategy to reconstruct the TT -deformed higher conserved currents
Deformations induced by conserved currents with higher Lorentz spin
The classical Burgers-type equations
The quantum spectrum
The scattering phase
Burgers-type equations for the spectrum
The CFT limit of the NLIE
Further deformations involving the topological charge
The quantum JTmodel
A simple example involving a pair of scattering phase factors
Conclusions
A Deformed classical solutions
Explicit Lorentz breaking in a simple example
B Burgers equations
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call