Abstract

Cofactor-independent phosphoglycerate mutase (iPGM) has been previously identified as a member of the alkaline phosphatase (AlkP) superfamily of enzymes, based on the conservation of the predicted metal-binding residues. Structural alignment of iPGM with AlkP and cerebroside sulfatase confirmed that all these enzymes have a common core structure and revealed similarly located conserved Ser (in iPGM and AlkP) or Cys (in sulfatases) residues in their active sites. In AlkP, this Ser residue is phosphorylated during catalysis, whereas in sulfatases the active site Cys residues are modified to formylglycine and sulfatated. Similarly located Thr residue forms a phosphoenzyme intermediate in one more enzyme of the AlkP superfamily, alkaline phosphodiesterase/nucleotide pyrophosphatase PC-1 (autotaxin). Using structure-based sequence alignment, we identified homologous Ser, Thr, or Cys residues in other enzymes of the AlkP superfamily, such as phosphopentomutase, phosphoglycerol transferase, phosphonoacetate hydrolase, and GPI-anchoring enzymes (glycosylphosphatidylinositol phosphoethanolamine transferases) MCD4, GPI7, and GPI13. We predict that catalytical cycles of all the enzymes of AlkP superfamily include phosphoenzyme (or sulfoenzyme) intermediates.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call