Abstract
BackgroundLocalised patterns of species diversity can be influenced by many factors, including regional species pools, biogeographic features and interspecific interactions. Despite recognition of these issues, we still know surprisingly little about how invertebrate biodiversity is structured across geographic scales. In particular, there have been few studies of how insect communities vary geographically while using the same plant host. We compared the composition (species, genera) and functional structure (guilds) of the chalcid wasp communities associated with the widespread fig tree, Ficus benjamina, towards the northern (Hainan province, China) and southern (Queensland, Australia) edges of its natural range. Sequence data were generated for nuclear and mtDNA markers and used to delimit species, and Bayesian divergence analyses were used to test patterns of community cohesion through evolutionary time.ResultsBoth communities host at least 14 fig wasp species, but no species are shared across continents. Community composition is similar at the genus level, with six genera shared although some differ in species diversity between China and Australia; a further three genera occur in only China or Australia. Community functional structure remains very similar in terms of numbers of species in each ecological guild despite community composition differing a little (genera) or a lot (species), depending on taxonomic level. Bayesian clustering analyses favour a single community divergence event across continents over multiple events for different ecological guilds. Molecular dating estimates of lineage splits between nearest inter-continental species pairs are broadly consistent with a scenario of synchronous community divergence from a shared “ancestral community”.ConclusionsFig wasp community structure and genus-level composition are largely conserved in a wide geographic comparison between China and Australia. Moreover, dating analyses suggest that the functional community structure has remained stable for long periods during historic range expansions. This suggests that ecological interactions between species may play a persistent role in shaping these communities, in contrast to findings in some comparable temperate systems.
Highlights
Localised patterns of species diversity can be influenced by many factors, including regional species pools, biogeographic features and interspecific interactions
Species delimitation Identification of congruent monophyletic lineages between Bayesian phylogenies constructed from COI and ITS2 markers suggests that wasp communities in China and Australia each have 14 species
Historical divergence Simultaneous divergence events were consistently supported over scenarios of multiple divergences according to guild (Table 3) and we suggest that most members of the extant Australian and Chinese communities are inherited from the same “ancestral community” that already had the major fig wasp guilds established
Summary
Localised patterns of species diversity can be influenced by many factors, including regional species pools, biogeographic features and interspecific interactions Despite recognition of these issues, we still know surprisingly little about how invertebrate biodiversity is structured across geographic scales. Communities in which species have dispersed at different times from source populations have likely experienced intermittent interspecific interactions Such a history reduces potential for coevolutionary dynamics to shape community assembly and increases the opportunities for colonisation of certain niches by other species. This may facilitate ecological dominance for early colonisers that can monopolise resources and impede species at higher trophic levels that cannot invade new populations until their target resources arrive
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.