Abstract

The concentration and composition of the gliadin and glutenin seed storage proteins (SSPs) in wheat flour are the most important determinants of its end-use value. In cereals, the synthesis of SSPs is predominantly regulated at the transcriptional level by a complex network involving at least five cis-elements in gene promoters. The high-molecular-weight glutenin subunits (HMW-GS) are encoded by two tightly linked genes located on the long arms of group 1 chromosomes. Here, we sequenced and annotated the HMW-GS gene promoters of 22 electrophoretic wheat alleles to identify putative cis-regulatory motifs. We focused on 24 motifs known to be involved in SSP gene regulation. Most of them were identified in at least one HMW-GS gene promoter sequence. A common regulatory framework was observed in all the HMW-GS gene promoters, as they shared conserved cis-regulatory modules (CCRMs) including all the five motifs known to regulate the transcription of SSP genes. This common regulatory framework comprises a composite box made of the GATA motifs and GCN4-like Motifs (GLMs) and was shown to be functional as the GLMs are able to bind a bZIP transcriptional factor SPA (Storage Protein Activator). In addition to this regulatory framework, each HMW-GS gene promoter had additional motifs organized differently. The promoters of most highly expressed x-type HMW-GS genes contain an additional box predicted to bind R2R3-MYB transcriptional factors. However, the differences in annotation between promoter alleles could not be related to their level of expression. In summary, we identified a common modular organization of HMW-GS gene promoters but the lack of correlation between the cis-motifs of each HMW-GS gene promoter and their level of expression suggests that other cis-elements or other mechanisms regulate HMW-GS gene expression.

Highlights

  • Wheat is one of the three most economically important crops in the world with maize and rice, with a global annual production of about 700 Mt in 2012 (FAOSTAT; http://faostat.fao.org/)

  • The following results deal with the noncoding DNA region upstream of the start codon given that for high-molecular-weight glutenin subunits (HMW-GS) genes the transcription start site (TSS) is about 60 bases upstream of the start codon for translation

  • These specific regions have an average of one polymorphism every 100 bases

Read more

Summary

Introduction

Wheat is one of the three most economically important crops in the world with maize and rice, with a global annual production of about 700 Mt in 2012 (FAOSTAT; http://faostat.fao.org/). Wheat is one of the most important sources of carbohydrates and vegetable proteins in human diets as it accounts for about 20% of all calories and proteins consumed. It is mostly transformed before it is consumed, and each type of transformation depends on the unique visco-elastic properties of gluten, a network formed by water and seed storage proteins (SSPs). The major component of wheat SSPs, comprise monomeric gliadins and polymeric glutenins. The latters have both low- (LMW-GS) and high- (HMW-GS) molecular-weight subunits. Glutenins strongly influence dough elasticity (Payne et al, 1987; Shewry et al, 2002), with HMW-GS more so than LMWGS (Branlard and Dardevet, 1985; Gupta and MacRitchie, 1994; He et al, 2005)

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call