Abstract

The Cholecystokinin type 1 and type 2 receptors (CCK-1R and CCK-2R) share >50% amino acid identity, as well as subnanomolar affinity for the endogenous peptide cholecystokinin octapeptide (CCK-8). Although it is likely that these two receptor subtypes share amino acids that confer CCK-8 affinity, it has been difficult to identify such residues. We have examined the role of several transmembrane domain (TMD) IV residues that are common to both CCK receptor subtypes. In both the CCK-1R and CCK-2R, we demonstrate that alanine substitution of two TMD IV residues, which are highly conserved among all known CCK receptor subtypes and species homologs, significantly decrease CCK-8 affinity. Despite the observed decrease in peptide binding, the mutant receptors maintain close to wild-type affinity for the respective subtype selective nonpeptide ligands, 3H-labeled L-364,714 (CCK-1R) and 3H-labeled L-365,260 (CCK-2R), suggesting conserved tertiary structure of these mutants. Assessment of CCK-8-induced inositol phosphate production at each of the mutant CCK receptors revealed normal peptide efficacy. In contrast, peptide potencies are reduced in parallel with the observed decreases in affinity. Taken together, these findings suggest that important peptide affinity determinants are localized on TMD IV, a region that has not previously been considered a major contributor to ligand affinity in either CCK receptors or other G protein-coupled peptide receptors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.