Abstract
Thioredoxin glutathione reductase (TGR), a potential anthelminthic drug target causes NADPH-dependent transfer of electrons to both thioredoxins and glutathione systems. In the present study, we showed that a single point mutation conserved at Arg451 position is critical for maintaining the structure-function of FgTGR. The current biochemical results showed that R451A mutation significantly decreases both oxidoreductase activities (glutathione reductase and thioredoxin reductase) of the enzyme. Computational analyses using molecular dynamics simulation provided an in-depth insight into the structural alterations caused as a result of the mutation. Furthermore, the different regions of the mutant FgTGR structure were found to be altered in flexibility/rigidity as a result of the mutation. This led to mutant-specific conformational alterations and dominant differential motions that contributed to the abrogated function of mutant FgTGR. These results were confirmed using GdnHCl-induced denaturation-based stability studies. Moreover, mutation reduced the free energy of stabilization of the protein, thereby destabilizing the mutant protein structure. Therefore, these findings displayed differential dynamics in the FgTGR structure and highlighted the relevance of residue-level interactions in the protein. Thus, the current study provided a basis for exploiting regions other than the active site of TGR for inhibitory effect and development of novel antihelminthics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.