Abstract

In this paper, we propose two momentum-preserving finite difference schemes for solving one-dimensional Camassa–Holm equation with periodic boundary conditions. A two-level nonlinear difference scheme and a three-level linearized difference scheme are constructed by using the method of order reduction. For nonlinear scheme, we combine mid-point rule and a specific difference operator, which ensures that our obtained scheme is of second-order convergence in both temporal and spatial directions. For linearized scheme, we apply a linear implicit Crank–Nicolson scheme in the temporal direction, then unique solvability and momentum conservation are analysed in detail. Numerical experiments are provided for Camassa–Holm equation admitting different types of solutions, which demonstrate the convergence order and accuracy of the proposed methods coincide with theoretical analysis. Moreover, numerical results show that the nonlinear scheme exhibits better accuracy for mass conservation, while the linearized scheme is more time-saving in computation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.