Abstract

The recent development of nanoelectronic devices that incorporate Dirac materials has highly increased the need for adequate simulation and modelling tools. This paper introduces an accurate, multiphysics finite-difference time-domain method to solve the pertinent Maxwell-Dirac equations. The stability criterion for the Dirac equation with electromagnetic fields is derived, which reduces to the Courant-Friedrichs-Lewy condition in the absence of electromagnetic fields. Validation examples show the second-order accuracy of the novel fully coupled Maxwell-Dirac scheme and illustrate that total norm and energy are caonserved within a relative error of order 10−4. The method is applied to a ZrTe5 waveguide and it is found that even at low field strengths, the charge carriers can be accelerated to 80% of the Fermi velocity. Furthermore, the flexibility of the advocated method allows for the seamless integration into existing computational electromagnetics frameworks and the possible extension to higher-order schemes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.