Abstract

AbstractWe consider Hamiltonian matrices obtained by means of symmetric and positive definite matrices and analyse some perturbations that maintain the eigenvalues on the imaginary axis of the complex plane. To obtain this result we prove for such matrices the existence of a diagonal form or, alternatively by means of symplectic transformations, the existence of thesimplestcanonical form. Applications related to a pair of problems in the context of linear algebra and differential equations are also reported. Copyright © 2004 John Wiley & Sons, Ltd.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.