Abstract

The micro-macro (mM) decomposition approach is considered for the numerical solution of the Vlasov–Poisson–Lenard–Bernstein (VPLB) system, which is relevant for plasma physics applications. In the mM approach, the kinetic distribution function is decomposed as f=E[ρf]+g, where E is a local equilibrium distribution, depending on the macroscopic moments ρf=∫Refdv=〈ef〉R, where e=(1,v,12v2)T, and g, the microscopic distribution, is defined such that 〈eg〉R=0. We aim to design numerical methods for the mM decomposition of the VPLB system, which consists of coupled equations for ρf and g. To this end, we use the discontinuous Galerkin (DG) method for phase-space discretization, and implicit-explicit (IMEX) time integration, where the phase-space advection terms are integrated explicitly and the collision operator is integrated implicitly. We give special consideration to ensure that the resulting mM method maintains the 〈eg〉R=0 constraint, which may be necessary for obtaining (i) satisfactory results in the collision dominated regime with coarse velocity resolution, and (ii) unambiguous conservation properties. The constraint-preserving property is achieved through a consistent discretization of the equations governing the micro and macro components. We present numerical results that demonstrate the performance of the mM method. The mM method is also compared against a corresponding DG-IMEX method solving directly for f.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.