Abstract

Summary Groundwater samples were collected along a flow path in a shallow, fractured tuffaceous aquifer from the Oasis Valley–Beatty Wash region of southern Nevada, USA, and analyzed for a number of oxyanion-forming trace elements including arsenic (As), antimony (Sb), selenium (Se), molybdenum (Mo), and tungsten (W). In addition, ancillary geochemical parameters, including pH, major solute compositions, dissolved silica, dissolved oxygen, and iron and manganese concentrations were quantified in the groundwaters. Arsenic concentrations range from ∼70 nmol/kg up to 316 nmol/kg in groundwaters of the Oasis Valley–Beatty Wash flow system, and generally exhibit increasing concentrations with flow down-gradient along the flow path. Antimony, W, and to a lesser extent, Mo, exhibit similar increasing concentration trends with flow down-gradient in the aquifer, albeit, at lower concentrations levels (e.g., mean ± SD for Sb, W, and Mo are 2.3 ± 0.9 nmol/kg, 7.4 ± 3.7 nmol/kg, and 101 ± 19 nmol/kg, respectively). Selenium concentration, which range between ∼4 and 11 nmol/kg, generally decrease in groundwaters with flow down-gradients in the Oasis Valley–Beatty Wash groundwater flow systems. Inverse modeling of groundwater chemistry evolution from the lower reaches of the Oasis Valley flow path using PHREEQC indicate that the groundwater composition is consistent with mixing of nearly equal proportions of groundwater from upper reaches of Oasis Valley and Beatty Wash groundwater, along with dissolution of volcanic glass, potassium feldspar, and gypsum, followed by calcite precipitation, and formation of secondary zeolites (analcime), clay minerals (Ca-montmorillonite), and cristobalite. The geochemical modeling indicates that the concentrations of As and the other oxyanion-forming trace elements are controlled by dissolution of volcanic glass, water–rock interaction with mineralized zones within the aquifer (i.e., sulfide oxidation), desorption from aquifer surface sites, and mixing of Oasis Valley and Beatty Wash groundwaters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.