Abstract

Systematic conservation planning is a framework for optimally locating and prioritizing areas for conservation. An often-noted shortcoming of most conservation planning studies is that they do not address future uncertainty. The selection of protected areas that are intended to ensure the long-term persistence of biodiversity is often based on a snapshot of the current situation, ignoring processes such as climate change. Scenarios, in the sense of being accounts of plausible futures, can be utilized to identify conservation area portfolios that are robust to future uncertainty. We compared three approaches for utilizing scenarios in conservation area selection: considering a full set of scenarios (all-scenarios portfolio), assuming the realization of specific scenarios, and a reference strategy based on the current situation (current distributions portfolio). Our objective was to compare the robustness of these approaches in terms of their relative performance across future scenarios. We focused on breeding bird species in Israel’s Mediterranean region. We simulated urban development and vegetation dynamics scenarios 60 years into the future using DINAMICA-EGO, a cellular-automata simulation model. For each scenario, we mapped the target species’ available habitat distribution, identified conservation priority areas using the site-selection software MARXAN, and constructed conservation area portfolios using the three aforementioned strategies. We then assessed portfolio performance based on the number of species for which representation targets were met in each scenario. The all-scenarios portfolio consistently outperformed the other portfolios, and was more robust to ‘errors’ (e.g., when an assumed specific scenario did not occur). On average, the all-scenarios portfolio achieved representation targets for five additional species compared with the current distributions portfolio (approximately 33 versus 28 species). Our findings highlight the importance of considering a broad and meaningful set of scenarios, rather than relying on the current situation, the expected occurrence of specific scenarios, or the worst-case scenario.

Highlights

  • We focus on two major land cover change processes in Israel’s Mediterranean region: vegetation dynamics and urban development, and the identification of conservation priority areas for breeding birds under the uncertainty that results from different scenarios of these processes

  • Conservation planning under uncertainty in urban development and vegetation dynamics covered 28 species, whereas portfolios based on specific scenarios and on all scenarios covered an average of approximately 31 and 33 species, respectively

  • We proposed and demonstrated an approach to systematic conservation planning that incorporates both anthropogenic threats and ecological processes, taking into account the uncertainty regarding their outcomes, and enables a comparison of various strategies for allocating conservation resources

Read more

Summary

Introduction

Conservation planning under uncertainty in urban development and vegetation dynamics protected, and able to persist [1,2,3]. One source of future uncertainty arises from the difficulty of predicting the outcome of processes and their impact. Such uncertainty regarding the future can be the result of different types of epistemic uncertainty (uncertainty about facts) [9,11]: inherent randomness and natural variation of processes, data errors, limited knowledge of processes, and the limited ability of models to represent reality [2,9]. In this study our goal was to address this gap of dealing with future uncertainty in spatial distributions of species in conservation planning. We focus on two major land cover change processes in Israel’s Mediterranean region: vegetation dynamics and urban development, and the identification of conservation priority areas for breeding birds under the uncertainty that results from different scenarios of these processes

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call