Abstract

Our aim is to explore the similarities in structural fluctuations of homologous kinases. Gaussian Network Model based Normal Mode Analysis was performed on 73 active conformation structures in Ser/Thr/Tyr kinase superfamily. Categories of kinases with progressive evolutionary divergence, viz. (i) Same kinase with many crystal structures, (ii) Within-Subfamily, (iii) Within-Family, (iv) Within-Group, and (v) Across-Group, were analyzed. We identified a flexibility signature conserved in all kinases involving residues in and around the catalytic loop with consistent low-magnitude fluctuations. However, the overall structural fluctuation profiles are conserved better in closely related kinases (Within-Subfamily and Within-family) than in distant ones (Within-Group and Across-Group). A substantial 65.4% of variation in flexibility was not accounted by variation in sequences or structures. Interestingly, we identified substructural residue-wise fluctuation patterns characteristic of kinases of different categories. Specifically, we recognized statistically significant fluctuations unique to families of protein kinase A, cyclin-dependent kinases, and nonreceptor tyrosine kinases. These fluctuation signatures localized to sites known to participate in protein-protein interactions typical of these kinase families. We report for the first time that residues characterized by fluctuations unique to the group/family are involved in interactions specific to the group/family. As highlighted for Src family, local regions with differential fluctuations are proposed as attractive targets for drug design. Overall, our study underscores the importance of consideration of fluctuations, over and above sequence and structural features, in understanding the roles of sites characteristic of kinases. Proteins 2016; 84:957-978. © 2016 Wiley Periodicals, Inc.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.