Abstract
This study reports on the influence of stone covers with different clast sizes on the soil moisture of alpine talus slopes in Lassen (California). Fifteen four-plot sets were sampled in the dry season (July 1990) in sandy areas and in talus covered with pebbles, cobbles, or blocks between 2740 and 2775 m. Three depths (0–5, 5–10, 10–15 cm) were sampled. Field moisture content increased gradually with depth in all soil profiles, and also in plots covered by increasingly larger rocks. Surface soils in sand areas were very dry, but under rocks had water contents 6 to 14 times greater. Differences among plots decreased with depth, but subsoil samples in sand were still drier than those beneath any stone cover at similar depths. Blocks were most effective in conserving moisture; water content below them was higher than even in deep (10–15 cm) sand soils. Soil temperatures were recorded in sand and under blocks for an 11-day period. Minima were not significantly different, but average maxima were 5.6°C lower under blocks than in sand, which reached highs ∼4.4°C lower than the air. Differences in soil moisture among talus types are ascribed to lower evaporation losses under stones, due to both disruption of capillarity by the coarse particles, which prevented water flow to the talus surface, and to their efficient reduction of maximum temperatures. An irrigation experiment was conducted at 2110 m on a steep talus on the Chaos Crags from July 18 to Aug. 2, 1993. Four 100×75 cm plots with the same surface types than at Lassen received 22.5 mm water; moisture content was then periodically sampled. Watering produced similar water distributions among soil depths and talus types to those in Lassen. Evaporation occurred quickly in bare soils due to high air and soil temperatures. The sand surface was already dry 2 days after watering, but stone-covered plots remained moist until day 15, when soils under blocks still retained 77–97% of the water content (percent by weight) at the start of the test.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.