Abstract

AbstractOn‐surface chemistry holds the potential for ultimate miniaturization of functional devices. Porphyrins are promising building‐blocks in exploring advanced nanoarchitecture concepts. More stable molecular materials of practical interest with improved charge transfer properties can be achieved by covalently interconnecting molecular units. On‐surface synthesis allows to construct extended covalent nanostructures at interfaces not conventionally available. Here, we address the synthesis and properties of covalent molecular network composed of interconnected constituents derived from halogenated nickel tetraphenylporphyrin on Au(111). We report that the π‐extended two‐dimensional material exhibits dispersive electronic features. Concomitantly, the functional Ni cores retain the same single‐active site character of their single‐molecule counterparts. This opens new pathways when exploiting the high robustness of transition metal cores provided by bottom‐up constructed covalent nanomeshes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.