Abstract

The amino acid sequence of a protein determines both its final folded structure and the folding mechanism by which this structure is attained. The differences in folding behaviour between homologous proteins provide direct insights into the factors that influence both thermodynamic and kinetic properties. Here, we present a comprehensive thermodynamic and kinetic analysis of three homologous homodimeric four-helix bundle proteins. Previous studies with one member of this family, Rop, revealed that both its folding and unfolding behaviour were interesting and unusual: Rop folds (k(0)(f) = 29 s(-1)) and unfolds (k(0)(u) = 6 x 10(-7) s(-1)) extremely slowly for a protein of its size that contains neither prolines nor disulphides in its folded structure. The homologues we discuss have significantly different stabilities and rates of folding and unfolding. However, the rate of protein folding directly correlates with stability for these homologous proteins: proteins with higher stability fold faster. Moreover, in spite of possessing differing thermodynamic and kinetic properties, the proteins all share a similar folding and unfolding mechanism. We discuss the properties of these naturally occurring Rop homologues in relation to previously characterized designed variants of Rop.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.