Abstract
We present findings of genetic information conservation between the glucocorticoid response element (GRE) DNA and the cDNA encoding the glucocorticoid receptor (GR) DNA-binding domain (DBD). The regions of nucleotide sub-sequence similarity to the GRE in the GR DBD occur specifically at nucleotide sequences on the ends of exons 3,4, and 5 at their splice junction sites. These sequences encode the DNA recognition helix on exon 3, a beta-strand on exon 4, and a putative alpha-helix on exon 5, respectively. The nucleotide sequence of exon 5 that encodes the putative alpha-helix located on the carboxyl terminus of the GR DBD shares sequence similarity with the flanking nucleotide regions of the GRE. We generated a computer model of the GR DBD using atomic coordinates derived from nuclear magnetic resonance spectroscopy to which we attached the exon 5-encoded putative alpha-helix. We docked this GR DBD structure at the 39-base-pair nucleotide sequence containing the GRE binding site and flanking nucleotides, which contained conserved genetic information. We observed that amino acids of the DNA recognition helix, the beta-strand, and the putative alpha-helix are spatially aligned with trinucleotides identical to their cognate codons within the GRE and its flanking nucleotides.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.