Abstract
The influence of growth history on biofilm morphology and microbial community structure is poorly studied despite its important role for biofilm development. Here, biofilms were exposed to a change in hydrodynamic conditions at different growth stages and we observed how biofilm age affected the change in morphology and bacterial community structure. Biofilms were developed in two bubble column reactors, one operated under constant shear stress and one under variable shear stress. Biofilms were transferred from one reactor to the other at different stages in their development by withdrawing and inserting the support medium from one reactor to the other. The developments of morphology and microbial community structure were followed by image analysis and molecular tools. When transferred early in biofilm development, biofilms adapted to the new hydrodynamic conditions and adopted features of the biofilm already developed in the receiving reactor. Biofilms transferred at a late state of biofilm development continued their initial trajectories of morphology and community development even in a new environment. These biofilms did not immediately adapt to their new environment and kept features acquired during their early growth phase, a property we called memory effect.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.