Abstract

A centromeric satellite DNA clone was isolated from the genome of the European red deer (Cervus elaphus hippelaphus) and designated Ce-Pst1. This clone was localized to the centromeric region of all red deer chromosomes with the exception of a single pair of metacentric autosomes and the Y chromosome. DNA sequence analysis of the 806-bp Ce-Pst1 clone showed 73.0-78.9% sequence homology to four previously isolated cervid centromeric satellite DNA clones, suggesting that the Ce-Pst1 clone is yet another member of the major cervid centromeric satellite DNA family. Using a DNA sequence comparison system, internal 31-bp tandem subrepeats were found in the Ce-Pst1 clone as well as in the other previously reported cervid centromeric satellite DNA monomer sequences. A 31-bp consensus sequence was constructed for each cervid monomer clone and shown to be highly homologous to the 31-bp subrepeat consensus sequence found in bovine 1.715 centromeric satellite DNA. The identification of internal subrepeats in the satellite monomers studied could suggest that amplification of an ancestral 31-bp DNA sequence may have contributed to the genesis of major cervid centromeric satellite DNA. The homology between the 31-bp subrepeats found in cervid and bovid centromeric satellite DNAs substantiates the theory that amplification of this 31-bp DNA sequence may have occurred before the evolutionary separation of these two families 20-25 million years ago.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call