Abstract

We investigate conservation laws in the quantum mechanics of closed systems. We review an argument showing that exact decoherence implies the exact conservation of quantities that commute with the Hamiltonian including the total energy and total electric charge. However, we also show that decoherence severely limits the alternatives which can be included in sets of histories which assess the conservation of these quantities when they are not coupled to a long-range field arising from a fundamental symmetry principle. We then examine the realistic cases of electric charge coupled to the electromagnetic field and mass coupled to spacetime curvature and show that when alternative values of charge and mass decohere, they always decohere exactly and are exactly conserved as a consequence of their couplings to long-range fields. Further, while decohering histories that describe fluctuations in total charge and mass are also subject to the limitations mentioned above, we show that these do not, in fact, restrict {\it physical} alternatives and are therefore not really limitations at all.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.